Fluorocarbon- and Carborane-Gold Complexes

By MISS C. M. MITCHELL and F. G. A. STONE*

(Department of Inorganic Chemistry, The University, Bristol BS8 1TS)

Summary The synthesis of fluorocarbon-gold complexes from Ph_3PAuMe is described, including the preparation of binuclear species $[Ph_3PAu]_2(AB)$ $[AB = (CF_3)_2CO,$ $(CF_3)_2CNH$, and $(CF_3)_2C_2]$: whereas the gold-carbon bond in $Ph_3PAuC_2F_4Me$ is cleaved by bromine, a gold(111) complex $Ph_3PAu(C_2B_{10}H_{10}Ph)(Br)_2$ is obtained from $Ph_3PAu(C_2B_{10}H_{10}Ph)$, an example of a very stable new class of organogold(1) compound. reduction to metallic gold occurred. Hexafluorobut-2-yne also reacts with (I) to give a binuclear gold complex $[Ph_3PAu]_2C_2(CF_3)_2$ (V), there being no evidence for formation of the simple insertion product $Ph_3PAu[C_2(CF_3)_2]Me$. The ¹⁹F n.m.r. spectrum of (V) consists of a multiplet centred at 54 p.p.m. (relative to CCl_3F) with a pattern typical of an X₃AA'X'₃ system, but poorly resolved, so that the coupling constants could not be evaluated. Nevertheless, either $J_{AA'}$ or $J_{XX'}$ is *ca*. 50 Hz, and the magnitude of this coupling establishes that it is the phosphorus nuclei which are strongly coupled and not the CF₃ groups.¹

It has very recently been reported² that $Ph_3PAuC_6F_5$ (Au^I, d^{10}) reacts with bromine to give $Ph_3PAu(C_6F_5)(Br)_2$ (Au^{III}, d^8), together with some Ph_3PAuBr . Fluoroalkyl groups in gold(1) complexes such as (II) are readily cleaved by electrophilic reagents, so that organogold(111) complexes could not be obtained by this route. Bromine affords Ph_3PAuBr , and pentafluorobenzoic acid gives Ph_3PAuO_2 -CC₆ F_5 . Above 120° the latter releases CO₂ and forms the compound $Ph_3PAuC_6F_5$.^{2,3}

Our inability to obtain an organogold(III) dibromide by

In studies on the use of d^{10} -complexes in the synthesis of organometallics, we have obtained several new organogold complexes which are themselves useful intermediates. U.v. irradiation of a mixture of methyl(triphenylphosphine)gold (I) and tetrafluoroethylene in benzene affords air stable, white crystalline Ph₃PAuCF₂CF₂Me (II). In contrast, hexafluoroacetone reacts with (I) at room temperature to give a novel binuclear gold complex Ph₃PAuC(CF₃)₂OAuPPh₃ (III). The latter undergoes an unusual exchange reaction with hexafluoroisopropylidenimine giving Ph₃PAuC(CF₃)₂-N(H)AuPPh₃ (IV). Surprisingly, (IV) could not be obtained by treatment of (I) with (CF₃)₂CNH; only rapid

treating (II) with bromine contrasts also with the behaviour of a new class of organogold complex. A series of triphenylphosphinegold-carborane compounds Ph₃PAuC₂B₁₀H₁₀R [R = H, Me, or Ph] have been prepared by treating Ph₃PAuCl with the lithio-derivative of the carborane. The gold derivatives are all white, crystalline solids, soluble in benzene, and have very high thermal stability. They may be heated at 130-200° before any decomposition occurs. The complex Ph₃PAuC₂B₁₀H₁₀Me (VI) does not react with trifluoroacetic acid in benzene solution whereas (I) with this reagent affords Ph₃PAuO₂CCF₃ at room temperature. The unusual stability of gold-carborane σ -bonds is further illustrated by their failure to undergo insertion reactions with tetrafluoroethylene, and by the oxidative-addition reaction which occurs between 1-phenyl-2-(triphenylphosphinegold)-1,2-dicarbaclovododecaborane and bromine to give the gold(III) complex $Ph_3PAu(C_2B_{10}H_{10}Ph)(Br)_2$ (VII), $[v_{max} (Au-Br)^4 209 \text{ and } 264 \text{ cm}^{-1}]$. The stability of the gold-carborane bond may be related to the well-established electron-withdrawing⁵ influence of the carborane group, so that addition of bromine is not followed by a reductiveelimination step.

(Received, July 20th, 1970; Com. 1165.)

¹ H. C. Clark and W. S. Tsang, J. Amer. Chem. Soc., 1967, 89, 533.

² L. G. Vaughan and W. A. Sheppard, *J. Amer. Chem. Soc.*, 1969, **91**, 6151. ³ R. S. Nyholm and P. Royo, *Chem. Comm.*, 1969, 421.

⁴ D. A. Duddell, P. L. Goggin, R. J. Goodfellow, M. G. Norton, and J. G. Smith, J. Chem. Soc. (A), 1970, 545. ⁵ A. Yu. Aleksandrov, V. I. Bregadze, V. I. Gol'danskii, L. I. Zakharkin, O. Yu. Okhlobystin, and V. V. Khrapov, Doklady Akad. Nauk S.S.S.R., 1965, 165, 593.